Day 12

Path Generation

Joint-Space Path

▶ a joint-space path is computed considering the joint variables

Joint-Space Path Joint Angles

Cubic Polynomial Path

Figure 5.13: (a) Cubic polynomial trajectory. (b) Velocity profile for cubic polynomial trajectory. (c) Acceleration profile for cubic polynomial trajectory.

Quintic Polynomial Path

$\lceil 1 \rceil$	t_0	t_0^2	t_0^3	t_0^4	t_0^5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$\left\lceil a_0 \right\rceil$		$\left\lceil q_0 ight ceil$
0	1	$2t_0$	$3t_0^2$	$4t_0^3$	$5t_0^4$	a_1		v_0
0	0	2	$6t_0$	$12t_0^2$	$20t_0^3$	a_2		$ \alpha_0 $
1	t_f	t_f^2	t_f^3	t_f^4	t_f^5	a_3		$ q_f $
0	1	$2t_f$	$3t_f^2$	$4t_f^3$	$5t_f^4$	a_4		v_f
0	0	2	$6t_f$	$12t_f^2$	$20t_f^3$	$\lfloor a_5 \rfloor$		$\lfloor lpha_f floor$

Quintic Polynomial Path

Figure 5.14: (a) Quintic polynomial trajectory, (b) its velocity profile, and (c) its acceleration profile.

4 Via Points with Cubic Polynomials

Figure 5.18: (a) Cubic spline trajectory made from three cubic polynomials. (b) Velocity profile for multiple cubic polynomial trajectory. (c) Acceleration profile for multiple cubic polynomial trajectory.

4 Via Points with Quintic Polynomials

Figure 5.19: (a) Trajectory with multiple quintic segments. (b) Velocity profile for multiple quintic segments. (c) Acceleration profile for multiple quintic segments.